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Introduction and Overview

1 The problem of deciding whether two give graphs are the “same”
has applications in e.g., neuroscience, social networks.

2 We propose a valid and consistent test for the above under a
random graph model.

3 The test proceeds by embedding the graphs into Euclidean space
followed by computing a distance between a kernel density
“estimate” of the embedded points.



Random dot product graphs

Let Ω be a subset of Rd such that, for all ω,ω ′ ∈ Ω, 0 6 〈ω,ω ′〉 6 1.
Let F be a distribution taking values in Ω.

1 Let {Xi}
n
i=1

i.i.d
∼ F.

2 An ∼ RDPG(F) is the adjacency matrix of a graph associated with
{Xi}

n
i=1. The upper diagonal entries of An are independent Bernoulli

random variables with P[Xi ∼ Xj] = 〈Xi,Xj〉, i.e.,

P[An | {Xi}
n
i=1] =

∏
i<j

〈Xi,Xj〉An(i,j)(1 − 〈Xi,Xj〉)1−An(i,j)

See Young and Scheinerman (2007).



Random dot product graphs are an example of latent position
graphs (Hoff et al., 2002), in which each vertex is associated with a
latent position.

Random dot product graphs are related to stochastic blockmodels
Holland et al. (1983), degree-corrected stochastic block models
Karrer and Newman (2011), and mixed membership block models
Airoldi et al. (2008).

Non-identifiability: For any distribution F and orthogonal matrix W,
the graphs A ∼ RDPG(F) and B ∼ RDPG(F ◦W) are identically
distributed.



X = {Xi}
n
i=1 ⊂ Rd P = XXT ∈ [0, 1]n×n A = Bern(K)

original latent vectors probability matrix adjacency matrix
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Observation

A looks like P (at least at rough scale).



Problem Statement

Given A ∼ RDPG(F) and B ∼ RDPG(G), consider the following test:

H0 : F =W G against H1 : F 6=W G

where F =W G denotes that there exists an orthogonal d× d matrix W
such that F = G ◦W and F 6=W G denotes that F 6= G ◦W for any
orthogonal W.



Adjacency spectral embedding

Definition

Let A be an n× n adjacency matrix and denote by |A| the matrix
(ATA)1/2. Let d > 1 and consider the following spectral decomposition
of |A|

|A| = [UA|ŨA][SA ⊕ S̃A][UA|ŨA]

where UA ∈ Rn×d, ŨA ∈ Rn×d. The columns of UA correspond to the d
largest eigenvalues of |A|. The adjacency spectral embedding of A into

Rd is then the n× d matrix X̂ = UAS
1/2
A .



X̂ is close to X
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Modicum of consistency I

Theorem

Suppose (A, X) ∼ RDPG(F) is a graph on n vertices. Denote by X̂ the
adjacency spectral embedding of A into Rd. Let η > 0 be arbitrary.
Then for sufficiently large n there exists a d× d orthogonal matrix W
such that, with probability at least 1 − 3η,∣∣∣‖X̂ − XW‖F − C1(F)

∣∣∣ 6 C2(F)d
3/2 log (n/η)√
n

(1)

where C1(F) and C2(F) are constants depending only on F.



Two-sample testing via maximum mean discrepancy

Let κ be a kernel on Ω with reproducing kernel Hilbert space H. Denote
by F the unit ball F = {h ∈ H : ‖h‖H 6 1}.

For a distribution F taking values in Ω the map µ[F] defined by

µ[F] :=

∫
Ω

κ(ω, ·) dF(ω).

belongs to H. If κ is a universal kernel, then µ is an injective map.

Let F and G be probability distributions taking values in Ω; X,X ′ ∼ F and
Y, Y ′ ∼ G. Then

‖µ[F] − µ[G]‖2H = sup
h∈F

|EF[h] − EG[h]|2

= E[κ(X,X ′)] − 2E[κ(X, Y)] + E[κ(Y, Y ′)].
(2)

is an integral probability metric, termed the maximum mean discrepancy
Gretton et al. (2012).



Denote by Φ : Ω 7→ H the canonical feature map

Φ(X) = κ(·,X)

of κ. Given {Xi}
i.i.d
∼ F and {Yi}

i.i.d
∼ G, the quantity Vn,m(X, Y)

Vn,m(X, Y) =
∥∥∥ 1

n

n∑
i=1

Φ(Xi) −
1

m

n∑
k=1

Φ(Yk)
∥∥∥2
H

=
1

n2

n∑
i=1

n∑
j=1

κ(Xi,Xj) −
2

mn

m∑
i=1

n∑
k=1

κ(Xi, Yk)

+
1

m2

m∑
k=1

m∑
l=1

κ(Yk, Yl).

is a consistent estimate of ‖µ[F] − µ[G]‖2H.



Test statistic

Denote by X̂ = {X̂1, . . . , X̂n} and Ŷ = {Ŷ1, . . . , Ŷm} the adjacency spectral
embedding of A and B, respectively. Assume that κ is a unitarily
invariant kernel, e.g., a radial kernel. Define the test statistic Vn,m(X̂, Ŷ)
as follows:

Vn,m(X̂, Ŷ) =
1

n2

n∑
i=1

n∑
j=1

κ(X̂i, X̂j) −
2

mn

n∑
i=1

m∑
k=1

κ(X̂i, Ŷk)

+
1

m2

m∑
l=1

m∑
k=1

κ(Ŷk, Ŷl)



Modicum of consistency II

Theorem

Let (X, A) ∼ RDPG(F) and (Y, B) ∼ RDPG(G) be independent random
dot product graphs with latent position distributions F and G satisfying
distinct eigenvalues assumption. Consider the hypothesis test

H0 : F =W G against H1 : F 6=W G

Suppose m,n→∞ and m/(m+ n)→ ρ ∈ (0, 1). Then under the null

(m+ n)(Vn,m(X̂, Ŷ) − Vn,m(X, YW))
a.s.−→ 0 (3)

where W is any orthogonal matrix such that F = G ◦W.



Sketch of argument

Eq. (3) that

(m+ n)(Vn,m(X̂, Ŷ) − Vn,m(X, YW))
a.s.−→ 0

follows from the following bound

sup
f∈F

∣∣∣ 1√
n

n∑
i=1

(
f(WX̂i) − f(Xi)

)∣∣∣ a.s.−→ 0

established via Taylor’s expansion and a covering number argument.



Limiting distribution of Vn,m(X̂, Ŷ).

Hence under the null hypothesis of F =W G, evoking previous results of
Anderson et al. (1994) and Gretton et al. (2012) for Vn,m(X, Y), one has

(m+ n)Vn,m(X̂, Ŷ)
d−→ 1

ρ(1 − ρ)

∞∑
l=1

λlχ
2
1l (4)

where {χ21l} are independent χ2 random variables with one degree of
freedom and {λl} are the eigenvalues of the integral operator

IF,κ̃(φ) =

∫
Ω

φ(y)κ̃(x,y)dF(y)



Simulation Results
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Figure 1 : Distribution of test statistics under null and alternative as
computed from the latent positions and those estimated from adjacency
spectral embedding for testing the null hypothesis F =W G.



ε = 0.02 ε = 0.05 ε = 0.1

n {X,Y} {X̂, Ŷ} {X,Y} {X̂, Ŷ} {X,Y} {X̂, Ŷ}

100 0.07 0.06 0.07 0.09 0.21 0.27
200 0.06 0.09 0.11 0.17 0.89 0.83
500 0.08 0.1 0.37 0.43 1 1

1000 0.1 0.14 1 1 1 1

Table 1 : Power estimates for testing the null hypothesis F =W G at a
significance level of α = 0.05 using bootstrap permutation tests for Vn,m(X̂, Ŷ)
and Vn,m(X, Y). In each bootstrap test, B = 200 bootstrap samples were
generated. Each estimate of power is based on 1000 Monte Carlo replicates of
the corresponding bootstrap test.
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